

The three most recent coronaviruses that have emerged since 2002 and are life threatening are:

- 1. SARS Severe Acute Respiratory Syndrome: Feb. 2003
- 2. MERS Middle East Respiratory Syndrome: Sept. 2012
- 3. COVID-19 cause by the virus name is SARS-CoV-2 Jan. 2020

IAQ Definitions by USEPA

IAQ refers to the air quality within and around the buildings and structures, especially as it relates to the health and comfort of building occupants. Understanding and controlling common pollutants indoors can help reduce your risk of indoor health concerns.

Health effects from indoor air pollutants may be experienced soon after exposure or possibly, years later.

In commercial buildings, indoor air quality arise when there is insufficient quantity of ventilation air being provided for the amount of air contaminants present in the conditioned space.

Acceptable Range fo	or Sj	pecific Ph	ysical Pa	nrameters – 2010
Parameter		Acceptable	e range	
 (a) Air temperature (b) Relative humidity (c) Air movement 		23.0 - 26 40 - 70 0.15 - 0	0 °C)%).50	
List of Indoor Air Conta	mina	ants and	acceptab	le limits
Indoor Air Contaminants		Eight-hours	time-weight concentra	ed average airborne ation
		ppm	mg/m³	cfu/m³
Chemical contaminants				
(a) Carbon dioxide		C1000	-	-
(b) Carbon monoxide		10	-	-
(c) Formaldehyde		0.1	-	-
(d) Ozone		0.05	-	-
(e) Respirable particulates		-	0.15	-
(f) Total volatile organic compou (TVOC)	ınds	3	-	-
Biological contaminants				
(a) Total bacterial counts		-	-	500
(b) Total fungal counts		-	-	1000

a) Systems Evaluation

Carry out checks to ensure all components and controls of the Centralized Mechanical Ventilation Air-Conditioning (MVAC) system are maintained and functioning as per design.

- The components include Chillers, pumps, Air Handling Unit (AHUs), Fan Coil Unit (FCUs), Controls, Sensors (Carbon monoxide, Carbon dioxide, Temperature, etc.) Variable Speed Drive (VSDs), intake and exhaust fans, chilled water and condenser water systems, air flow and circulation systems in ducting.
- It is advisable to increase outdoor fresh air ventilation by opening outdoor air dampers 100% in order to increase effective dilution ventilation per person. The recommendation from World Health Organization (WHO) is a minimum 10 L/s person of fresh air.
- iii. Reduce occupant density in air-conditioned spaces.
- iv. Checking filter seals to avoid bypass. Changing of filters according to the recommended maintenance frequency where it should be done during nonoperation periods, with the MVAC system turned off.

Airborne Transmission depends on people to launch viruses into the air. People can shed this many Flu Viruses into the air:

1. Coughing		3,00)0+	
2. Sneezing		3,00	+00	
3. Breathing	Nose-No	ne	Mouth-Varies	
4. Talking/Sing	ging	1,0	+00	
5. Vomiting		1,00)0+	
6. Diarrhea*	2	0,0	+00	

4. Guidance for Air-Conditioned Spaces with Mechanical Ventilation (Centralized Air Conditioning System)

As the transmission of SARS CoV-2 virus through the air is likely, the possible airborne exposure to the virus should be controlled in air-conditioned spaces. Hence, changes to building operations including the air-conditioning and mechanical ventilation systems can reduce air borne exposures.

a.) Systems Evaluation

System Evaluation:

Inspect HVAC equipment, systems, and controls to check for existing issues.

10

System Evaluation:

Inspect HVAC equipment, systems, and controls to check for existing issues and are functioning as per design

The components include Chillers, pumps, Air Handling Unit (AHUs), Fan Coil Unit (FCUs), Controls, Sensors (Carbon monoxide, Carbon dioxide, Temperature, etc.) Variable Speed Drive (VSDs), intake and exhaust fans, chilled water and condenser water systems, air flow and circulation systems in ducting.

ASHRAE

System Evaluation:

Analyze each HVAC system for appropriate engineering controls to improve its potential to reduce virus transmission.

Check calibration per the

guidance in ASHRAE

Guideline 11-2018,

Field testing of HAVC

Control Components.

Carry out checks to ensure all components and controls of the Centralized Mechanical Ventilation Air-Conditioning (MVAC) system are maintained and functioning as per design.

- i. The components include Chillers, pumps, Air Handling Unit (AHUs), Fan Coil Unit (FCUs), Controls, Sensors (Carbon monoxide, Carbon dioxide, Temperature, etc.) Variable Speed Drive (VSDs), intake and exhaust fans, chilled water and condenser water systems, air flow and circulation systems in ducting.
- ii. It is advisable to increase outdoor fresh air ventilation by opening outdoor air dampers 100% in order to increase effective dilution ventilation per person. The recommendation from World Health Organization (WHO) is a minimum 10 L/s person of fresh air.
- iii. Reduce occupant density in air-conditioned spaces.
- iv. Checking filter seals to avoid bypass. Changing of filters according to the recommended maintenance frequency where it should be done during nonoperation periods, with the MVAC system turned off.

The recommendation from World Health Organization is 10 l/s person (20 cfm/person).

But WHO is silent on the occupant density?

Alternatively, the CDC's guide for Ventilation in Buildings FAQ 9, mentions the use of portable CO2 sensors with a limit of 800ppm as an indicator of sufficient ventilation. <u>https://www.cdc.gov/coronavirus/2019-</u> <u>ncov/community/ventilation.html#fans</u>

Carbon Dioxide (2)

Carbon dioxide (CO_2) has been used as a surrogate for indoor pollutants emitted by humans and correlates with human metabolic activity.

- Humans are the main indoor source of carbon dioxide.
- Indoor levels are an indicator of the adequacy of outdoor air ventilation relative to indoor occupant density and metabolic activity.

CO₂ measurements are important as an indicator of the ventilation effectiveness for occupied buildings.

What is the fastest and most economical way to determine whether the ventilation rate in your office or home is effective, good enough or meet the requirement of 10 l/s per person?

Parameter	Acceptabl	e range	
(a) Air temperature (b) Relative humidity (c) Air movement	23.0 – 26 40 – 7 0.15 – 6	5.0 °C 0% 0.50	
ist of Indoor Air Contami	nants and	acceptabl	e limits
Indoor Air Contaminants	Eight-hours	s time-weighte concentra	ed average airborne tion
	ppm	mg/m³	cfu/m³
Chemical contaminants			
(a) Carbon dioxide	C1000	-	-
(b) Carbon monoxide	10	-	-
c) Formaldehyde	0.1	-	-
(d) Ozone	0.05	-	-
(e) Respirable particulates	-	0.15	-
(f) Total volatile organic compounds (TVOC)	3	-	-
Biological contaminants			
(a) Total bacterial counts	-	-	500
(b) Total fungal counts	-	-	1000

Acceptable Indoor Air Quality is defined as air in which there are no known Contaminants at harmful Concentrations as determined by Cognizant Authorities and with which a substantial majority (80% or more) of the people exposed do not express dissatisfaction.

.) Ventilation Rate Procedure (VRP) -

is a prescriptive procedure with a table of minimum required outdoor airflow rates per occupant for a variety of non-

residential occupancies.

The airflow rate per square foot of building floor area is based-

on the design occupancy density and the required flow rate per person, adjusted to reflect the air distribution system used.

1.) Ventilation Rate Procedure (VRP)

 $V_{bz} = R_p P_z + R_A A_z$ (PEOPLE + AREA COMPONENT)

Where V_{bz} = Design outdoor airflow required in the breathing zone of the occupied space or spaces in a zone, i.e the breathing zone outdoor air flow

A₂ = Zone floor area: the net occupiable floor area of the zone m^2 (ft²)

P_z = zone population: the largest number of people expected to occupy the zone during typical usage.

R_p = outdoor airflow rate required per person as determined from Table 6-1

R_a = outdoor airflow rate required per unit area as determined from Table 6-1

malaysiaGBC							
TABLE 6-1 N	/INIMUN	I VENTILA	TION RA	TES IN E	BREATHING ZO	ONE	
	People	Outdoor	Area O	utdoor	Def	ault Values	5
Occupancy	Air	Rate	Air F	Rate	Occupant Density	Comb Outo Air F	oined loor Rate
Category	F	R _p	R	а			, uic
	cfm/ person	L/s person	cfm/ft 2	L/s m²	#1000 ft² or #100 m²	cfm/ person	L/s person
Office Buildings	СОРҮ						1
Office Space	5	2.5	0.06	0.3	5	17	8.5
Reception areas	5	2.5	0.06	0.3	30	7	3.5

ASHRAE Std 62.1-2016 – Ventilation For Acceptable Indoor Air Qualy 1.) Example : Ventilation Rate Procedure (VRP) $V_{bz} = R_p.P_z + R_a.A_z$ Where $V_{bz} =$ Design outdoor airflow required $A_z =$ floor area = 1,000 sq. ft. , $P_z =$ population = 5 people (20m2/person) $R_p =$ outdoor airflow rate required per person as determined from Table 6-1 = 5 cfm/person $R_a =$ outdoor airflow rate required per unit area as determined from Table 6-1 = 0.06 cfm/ft2 $V_{bz} = R_p.P_z + R_a.A_z = 5 \times 5 + 0.06 \times 1,000$ = 85 cfm i.e 17cfm/person (8.5 l/s)

ASHRAE Std 62.1-2016 – Ventilation For Acceptable Indoor Air Qualy 1.) Example : Ventilation Rate Procedure (VRP) $V_{bz} = R_p P_z + R_a A_z$ Where $V_{bz} =$ Design outdoor airflow required $A_z =$ floor area = 10,000 sq. ft. , $P_z =$ population = 100 people (100%) $R_p =$ outdoor airflow rate required per person as determined from Table 6-1 = 5 cfm/person $R_a =$ outdoor airflow rate required per unit area as determined from Table 6-1 = 0.06 cfm/ft2 $V_{bz} = R_p P_z + R_a A_z = 5 \times 100 + 0.06 \times 10,000$ = 1,100 cfm i.e 11cfm/person (5.5 l/s per person) b.) In conditions where the minimum recommended ventilation rate
'10 L/s per Person' is not met, the number of persons permitted in the air-conditioned space shall be reduced accordingly.

ASHRAE Std 62.1-2016 – Ventilation For Acceptable Indoor Air Qualy

1.) Example : Ventilation Rate Procedure (VRP)

 $V_{bz} = R_p P_z + R_a A_z$ Where $V_{bz} =$ Design outdoor airflow required

A_z = floor area = 10,000 sq. ft. , P_z = population = 80 people (80%)

R_p = outdoor airflow rate required per person as determined from Table 6-1 = 5 cfm/person

R_a = outdoor airflow rate required per unit area as determined from Table 6-1 = 0.06 cfm/ft2

 $V_{bz} = R_p P_z + R_a A_z = 5 \times 80 + 0.06 \times 10,000 = 400 + 600$ = 1,000 cfm i.e 12.5 cfm/person (6.25 l/s)

ASHRAE Std 62.1-2016 – Ventilation For Acceptable Indoor Air Qualy 1.) Example : Ventilation Rate Procedure (VRP) V_{bz} = R_p.P_z + R_a.A_z Where V_{bz} = Design outdoor airflow required A_z = floor area = 10,000 sq. ft. , P_z = population = 40 people (40%) R_p = outdoor airflow rate required per person as determined from Table 6-1 = 5 cfm/person R_a = outdoor airflow rate required per unit area as determined from Table 6-1 = 0.06 cfm/ft2 V_{bz} = R_p.P_z + R_a.A_z = 5 x 40 + 0.06 x 10,000 = 200 + 600 = 800 cfm i.e 20 cfm/person (10.0 l/s per person)

What systems are available to sterilize, capture, inhibit and/or kill air borne Flu viruses?

1.) MERV Rated Filters (Minimum Efficiency Reporting Value) HEPA Filters

- 2.) Germicidal UV Lights (UVGI)
- 3.) Magnetized Air Media Filtration
- 4.) Cold Plasma Bi-Polar Ionization
- 5.) Photo-Catalytic Oxidation (PCO)
- 6.) EAC (Electronic Air Cleaners)
- 7.) Ionisers
- 8.) Low Density Engineered Ozone System.
- 9.) Gas Phase Filtration

What systems are available to sterilize, capture, inhibit and/or kill air borne Flu viruses?

1.) Germicidal UV Lights (UVGI)

2.) Ionizers

	GDONG DETECTION	CENTER	OF MICROBIOLC	GY	
	ANALYSIS AND	TEST F	RESULT		
Report No.: 2020	FM01878R02				
Testing Virus	Actuation Duration	No.	Total Virus In The Air(TCID ₅₀ /m ³)	Killing Rate (%)	
	0(CK)	1	4.85×10 ⁶		
Influenza A virus		2	2.86×10 ⁶		
H3N2 (A/PR/8/34)	3	4.53×10 ⁶		
Host name: MDC	к	1	<90	>99.99	
cells	1h	2	<90	>99.99	
253944573		3	<90	>99.99	
0 CHURLIOD				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			Total Bacteria	In Killing Rat	te
Duration	Testing Microorganisms	No.	Total Bacteria The Air(cfu/m ³	In Killing Rat 3) (%)	te
Duration	Testing Microorganisms Staphylococcus aureus	No.	Total Bacteria The Air(cfu/m ² 3.4×10 ⁶	In Killing Rat 3) (%)	te
Duration 0(CK)	Testing Microorganisms Staphylococcus aureus ATCC 6538	No.	Total Bacteria The Air(cfu/m ² 3.4×10 ⁶ 3.8×10 ⁶ 2.4×10 ⁹	In Killing Rat 3) (%)	te
0(CK)	Testing Microorganisms Staphylococcus aureus ATCC 6538	No. 1 2 3	Total Bacteria The Air(cfu/m ² 3.4×10 ⁶ 3.8×10 ⁶ 3.4×10 ⁶ 9.1×10 ²	In Killing Rat (%) 99.93	
Duration 0(CK) 2h	Testing Microorganisms Staphylococcus aureus ATCC 6538 Staphylococcus aureus	No. 1 2 3 1 2	Total Bacteria The Air(cfu/m ² 3.4×10° 3.8×10° 3.4×10° 9.1×10 ² 9.1×10 ²	In Killing Rat (%) 99.93 99.94	te
Duration 0(CK) 2h	Testing Microorganisms Staphylococcus aureus ATCC 6538 Staphylococcus aureus ATCC 6538	No. 1 2 3 1 2 3	Total Bacteria The Air(cfu/m ¹ 3.4×10 ⁶ 3.8×10 ⁶ 9.1×10 ² 9.1×10 ² 9.1×10 ²	In Killing Rat (%) 99.93 99.94 99.94	te
Duration O(CK) 2h	Testing Microorganisms Staphylococcus aureus ATCC 6538 Staphylococcus aureus ATCC 6538 Escherichia coli	No. 1 2 3 1 2 3 1 2 3 1	Total Bacteria The Air(cfu/m ² 3.4×10 ⁶ 3.8×10 ⁶ 3.4×10 ⁹ 9.1×10 ² 9.1×10 ² 9.1×10 ² 9.1×10 ² 4.4×10 ⁶	In Killing Rat (%) 99.93 99.94 99.94	
O(CK) 0(CK)	Testing Microorganisms Staphylococcus aureus ATCC 6538 Staphylococcus aureus ATCC 6538 Escherichia coli 8099	No. 1 2 3 1 2 3 1 2 2 3	Total Bacteria The Air(cfu/m) 3.4×10 ⁶ 3.4×10 ⁶ 3.4×10 ⁰ 9.1×10 ² 9.1×10 ² 9.1×10 ² 4.4×10 ⁶ 4.4×10 ⁶ 2.×10 ⁶	In Killing Rat (%) 99.93 99.94 99.94	
0(CK) 0(CK)	Testing Microorganisms Staphylococcus aureus ATCC 6538 Staphylococcus aureus ATCC 6538 Escherichia coli 8099	No. 1 2 3 1 2 3 1 2 3 1 2 3 1	Total Bacteria The Air(ctu/m ¹ 3.4×10° 3.4×10° 9.1×10 ² 9.1×10 ² 9.1×10 ² 4.4×10° 4.5×10° 3.7×10° 9.1×10 ²	In Killing Rat 9 (%) 99.93 99.94 99.94	
O(CK) 0(CK) 2h 0(CK)	Testing Microorganisms Staphylococcus aureus ATCC 6538 Staphylococcus aureus ATCC 6538 Escherichia coli 8099 Escherichia coli	No. 1 2 3 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 2 3 3 1 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 2 3 1 2 2 2 2 2 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Total Bacteria The Air(CtU/m) 3.4×10° 3.4×10° 9.1×102 9.1×102 9.1×102 4.4×10° 4.5×10° 3.7×10° 9.1×102 1.8×103	In Killing Rat (%) 99.93 99.94 99.94 99.94 99.94 99.94	
O(CK) 2h 0(CK) 2h	Testing Microorganisms Staphylococcus aureus ATCC 6538 Staphylococcus aureus ATCC 6538 Escherichia coli 8099	No. 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 3	Total Bacteria The Air(CtU/m) 3.4×10° 3.4×10° 9.1×10° 9.1×10° 4.4×10° 3.7×10° 9.1×10° 4.4×10° 3.7×10° 9.1×10° 9.1×10° 9.1×10°	In Killing Rate 3) (%) 90.93 99.94 99.94 99.94 99.94 99.90 99.94	
Duration Duration 0(CK) 2h 0(CK) 2h	Testing Microorganisms Staphylococcus aureus ATCC 6538 Staphylococcus aureus ATCC 6538 Escherichia coli 8099 Escherichia coli 8099	No. 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 3	Total Bacteria The Air(cfu/m) 3.4×10 ⁶ 3.8×10 ⁹ 9.1×10 ² 9.1×10 ² 9.1×10 ² 9.1×10 ² 4.4×10 ⁹ 4.4×10 ⁹ 9.1×10 ² 1.8×10 ³ 9.1×10 ² 1.8×10 ³ 9.1×10 ²	In Killing Rat % (%) 99.93 99.94 99.94 99.94 99.94 90.94 90.94	
Duration Duration 0(CK) 2h 0(CK) 2h	Testing Microorganisms Staphylococcus aureus ATCC 6538 Staphylococcus aureus ATCC 6538 Escherichia coli 8099 Escherichia coli 8099 (Bi	No. 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 3 nk below	Total Bacteria The Air(ctu/m) 3.4×10 ⁶ 3.8×10 ⁶ 9.1×10 ² 9.1×10 ² 9.1×10 ² 4.4×10 ⁶ 3.7×10 ⁶ 9.1×10 ² 9.1×10 ² 9.1×10 ² 9.1×10 ² 9.1×10 ²	In Killing Rat % (%) 90.93 90.93 90.94 99.94 99.94 99.94 99.94	
Duration Duration 0(CK) 2h 0(CK) 2h	Testing Microorganisms Staphylococcus aureus ATCC 6538 Staphylococcus aureus ATCC 6538 Escherichia coli 8099 Escherichia coli 8099 (Bia	No. 1 2 3 1 2 3 1 1 2 3 3 1 1 2 3 3 1 2 3 3 1 2 3 3 1 1 2 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 3	Total Bacteria The Air(cfu/m) 3.4×10° 3.8×10° 9.1×10² 9.1×10² 9.1×10² 1.8×10° 3.7×10° 9.1×10² 1.8×10° 9.1×10² 1.8×10° 9.1×10² 1.8×10° 9.1×10² 1.8×10°	In Killing Rat % (%) %99.93 99.94 99.94 99.94 99.94 99.94 99.94 99.94 99.94 99.94	
Duration 0(CK) 2h 0(CK) 2h	Testing Microorganisms Staphylococcus aureus ATCC 6538 Staphylococcus aureus ATCC 6538 Escherichia coli 8099 Escherichia coli 8099 (Bi	No. 1 2 3 1 2 3 1 2 2 3 3 1 2 2 3 3 nk below	Total Bacteria The Air(ctu/m) 3.4×10 ⁶ 3.8×10 ⁶ 9.1×10 ² 9.1×10 ² 9.1×10 ² 4.4×10 ⁶ 1.8×10 ³ 9.1×10 ² 9.1×10 ² 9.1×10 ² 9.1×10 ²	In Killing Rat % (%) 90.03 90.94 90.94 90.94 90.94 99.94 99.94	

RECOMMENDATIONS....

- 1. Wear a mask & wear it properly.
- 2. Keep a distance away(1 2 m)
- 3. Wash your hand frequently and sanitize common "touch" areas.
- 4. Coughing/sneezing occupants stay at home or wear a mask.
- 5. If you are sick, stay home.
- 6. If at home, open all doors and windows esp. morning for natural ventilation whenever weather permits.
- 7. Increased fresh air ventilation Dilution
- Maintain Relative Humidity of 50% 65%
- 9. Get the highest MERV rated filter that your filter rack and air handling fan can tolerate.
- 10. Put as much UV light within your coil plenum to achieve a 99.9% single pass kill rate.
- 11. Consider the various systems available for additional viral sterilization.

2. Wash your hand frequently and sanitize common "touch" areas.

How Soap Kills COVID-19 on Hands?

Source: Nippon Paint

Virus is a nanoparticle in which the weakest link is the lipid membrane

With 20 second washing, soap dissolves the lipid membrane and the virus falls apart. Once the membrane is broken down, the virus is no longer able to function.

34

